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Abstract—The paper considers leader-follower consensus of
multi-agent networks with unknown control direction. Sliding
mode control is used to achieve consensus tracking under fixed
topology with the assumption that the position of the leader
is known to a subset of the followers. The proposed consensus
law assumes unknown sign in the control input matrix of the
followers and does not require the knowledge of the leader’s
velocity. Lyapunov-based analysis is presented to show that if
the directed graph of the network has a directed spanning tree
then sliding mode control law can guarantee consensus tracking.
Simulations results are provided to verify the feasibility of the
proposed controller.

I. INTRODUCTION

Multi-agent systems excel in cooperatively accomplishing
tasks that may not be executable using any single agent [1],
which makes these systems attractive to a variety of military
and civilian applications, e.g., [2]–[5]. Design and analysis of
cooperative strategies for multi-agent systems can be challeng-
ing due to uncertainties in the environment (e.g., exogenous
disturbances), unmodeled dynamics, or parametric uncertain-
ties. If multiple agents, such as quadrotors or ground vehicles,
are defectively produced in batches, then it is not uncommon to
assume that they have model uncertainty as well as unknown
control direction [6]. To achieve stable cooperative behavior, it
is crucial to design controllers that compensate for modeling,
environmental as well as manufacturing anomalies.

Sliding mode control has been successfully used in coopera-
tive multi-agent systems to compensate for model uncertainties
and exogenous disturbances. Fuzzy sliding mode controllers
[7], [8], robust consensus controllers [9], [10], and robust
leaderless consensus controllers [11], [12] have been recently
developed for various leader-follower systems. Although suc-
cessful in their research endeavors, the existing solutions using
sliding mode control in cooperative multi-agent systems do not
take into account sign uncertainties in the input matrix.

The Nussbaum-type function has been extensively used in
systems with unknown control direction [13]–[15]. Stability
analysis for a single system using Nussbaum-type function is
relatively straightforward. However, for cooperative systems,
where each system contains an unknown control direction, the
analysis can be challenging (see [6], [15], [16]). Additionally,
the adaptive control approaches using Nussbaum-type function
in [6], [15], [16] can only guarantee asymptotic consensus.

The contribution of this paper is in the development of an
exponentially stable robust consensus controller for a second
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order system and a finite time stable robust controller for the first
order systems in the presence of unknown control direction and
non-vanishing disturbances. Leveraging the efforts in [17], for
leader-follower multi-agent systems, consensus is guaranteed
through periodic switching laws even when the followers have
unknown and possibly time-varying sign in their input matrix.
As opposed to [18]–[20], where the velocity of the leader is
assumed to be known, the proposed controller requires only
an upperbound on the leader’s velocity. The leader-follower
topology is modeled as a weighted directed graph such that the
directed spanning tree of the graph is rooted at the leader node.
The Lyapunov-based analysis guarantees exponential consen-
sus tracking of the agents. Simulations results are provided to
demonstrate the efficacy of the proposed controller.

II. UNKNOWN CONTROL DIRECTION BACKGROUND

Thefollowingsectionprovidesmathematicalbackgroundfor
the rest of the paper. An in-depth controller development can be
found in [17]. The method proposed in [17], [21], [22] is based
on partitioning hypersurfaces into cell-like structures. The
hypersurfaces are the cellular structure of the sliding manifolds
implemented through periodic switching. These manifolds are
parallel switching surfaces partitioned onto the state space as
cells

Mi = {x ∈ Rn : s̃i(x) = Ψ(si(x)) = 0} (1)

where s̃i(x) = 0 is the traditional switching surface, and Ψ (·)
is a switching function.

Consider a system with scalar control input as

ẋ = f (t, x) + b (t, x)us (2)

where x (t) ∈ Rn, b (t, x) ∈ Rn, us (t) ∈ R. The objective
is to stabilize the system to the desired manifold s(x) = 0,
where s(x) ∈ R1. The challenge of this system is the vector
b(t, x) = [b1(t, x), . . . , bn(t, x)]T defining actuation direction
is time- and state-dependent, and its sign is unknown. Taking
time derivative of the surface s (x) yields

ṡ = G(x)f(t, x) +G(x)b(t, x)us

whereG(x) = ∂s(x)
∂x . If the vector b (t, x) is known, then us (t)

can be designed so that ṡ (x) < 0, then sliding mode can occur
to guarantee that s (x) goes to zero. For an in-depth discussion
on sliding mode control, readers are referred to [23]. To reach
the sliding manifolds (x)without knowledge of the input vector
b(t, x), the proposed control law contains a periodic switching
function as

us = M0sign
[
sin
(π
ε
s̃
)]

(3)

where s̃(t) is defined as

s̃ = s(t) + λ

∫ t

0

sign(s(τ))dτ (4)
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andM0 > 0 is a positive control gain that can be a constant or a
function,λ ∈ R is a positive constant that determines the rate of
convergence of the manifolds, and ε ∈ R is a positive constant
that determines the spacing between the manifolds.

If for all t > 0 and x (t) ∈ Rn the function b(t, x) satisfies

G(x)b(t, x) 6= 0 (5)

then the control in (3) can reach the surface s (x) = 0 in finite
time, provided the variableM0 satisfies the inequality

|G(x)b(t, x)M0(t, x)| > |G(x)f(t, x)|+ λ+ c (6)

where c > 0 is some positive constant. From (6), it is obvious
that by increasing M0, the control law can compensate for
a larger range of uncertainty. Differentiating s̃ (t) in (4) and
substituting the controller in (3) yields

˙̃s = Gf +GbTM0sign
[
sin
(π
ε
s̃
)]

+ λsign(s). (7)

In the neighborhoods of the points where

s̃ = kε (8)

for k = 0,±2,±4, . . ., the following is obtained:

sign
[
sin
(π
ε
s̃
)]

= sign(s̃− kε)

and for k = ±1,±3, . . ., the following is obtained:

sign
[
sin
(π
ε
s̃
)]

= −sign(s̃− kε).

If the inequality in (6) is satisfied then sliding mode will occur
on one of the manifolds in (8) for any sign of G(x)b(t, x)M0.
In fact, sliding mode occurs where s̃ = constant after some
moment of time, and after differentiating (4) yields

ṡ = −λsign(s). (9)

Thus, (9) guarantees that the manifold s(x) = 0 is reached in
finite time.

From the geometric point of view, there are an infinite number
of parallel switching surfaces partitioned into cells (see Fig. 1)
thathavestableslidingmanifoldsforcertainsignofG(x)b(t, x).
Thus, based on (9), all the parallel manifolds move in the
direction of the manifold s = 0 and sliding mode is reached
in finite time.

III. LEADER-FOLLOWER TOPOLOGY

For notation convenience, let the node set V = {1, . . . , n}
be the group of agents. The set of leaders and followers are
denoted as VL and VF , respectively, such that VL ∪ VF = V
and VL ∩ VF = ∅. Let VL= {1} and VF = {2, . . . , n}.

Assumption 1. The graph G has a directed spanning tree
rooted at the leader’s node.

Assumption 2. At least one of the followers is connected to
the leader.

The interaction among the agents are modeled as a directed
graph G = (V, E), and E are the edges. The followers are
modeled as a directed graph GF = (VF , EF ). A direct edge
(i, j) ∈ E inG exists between node i and j if they are connected.

Fig. 1: Multiple Equilibrium Manifolds

Thedirectedge(i, j) indicates thatnode icanaccess thestatesof
node j through local sensing, but not vice versa. Therefore, node
j is a neighbor of node i. A directed spanning tree is a directed
graph, where every node has one parent except for the root node.
Therootnodehasdirectedpaths toeveryothernode in thegraph.
Since the followers are not aware of the leader’s intentions (e.g.,
itsdesiredtrajectory), theyhavetostayconnectedwiththeleader
directly or indirectly through concatenated paths, such that the
knowledge of the leader’s state can be delivered to all the nodes
through the connected network.

The weighted adjacency matrix A ∈ Rn×n of G contains
nonnegativeelements,whereaij ≥ 0 if there is anedgebetween
the ith and jth agent, and aij denotes the elements in A. Let
D , diag {d1, · · · , dn} ∈ Rn×n be the diagonal matrix, where
di ,

∑n
j=1 aij for i = 1, · · · , n.TheLaplacianof theweighted

graph G, denoted by L ∈ Rn×n, is defined as

L , D −A.

Let the adjacency matrix describing the topology between
the leader and followers be expressed as

A =


0 0 · · · 0
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 ∈ Rn×n (10)

and let the subgraph of G be denoted as Ḡ = {V̄, Ē}, where the
sub-adjacency matrix is defined as

Ā ,

 a22 · · · a2n
...

...
...

an2 · · · ann

 ∈ R(n−1)×(n−1). (11)

Consider a diagonal matrix D̄ = diag{d̄2, · · · , d̄n}, where
d̄i =

∑n
j=2 aij for i = 2, · · · , n. The elements of an adjacency

matrixA are represented by

aij =

{
1 ∀(i, j) ∈ E
0 otherwise . (12)
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Letbi denote the interconnectionbetween the ith agentand the
leader. The connection weight among the leaders and agents can
be represented by a diagonal matrix B̄ = diag{b2, · · · , bn} ∈
Rn−1×n−1, where

bi =

{
1 if agent i is connected to the leader
0 otherwise . (13)

IV. CONTROLLER DEVELOPMENT

Theleaderandthefollowersaremodeledasasingle integrator
system subjected to disturbance as

ẋi = giui + δi ∀i = 1, · · · , n (14)

where xi(t) ∈ R is the state of an ith agent, gi(t) ∈ R denotes
the inputgainofknownmagnitudebutunknownsign,ui(t) ∈ R
is thecontrol input, andδi(t) ∈ R is theunknownnon-vanishing
disturbance. The disturbance is assumed to be bounded in the
sense that

‖δi‖ ≤ ∆̄i <∞ (15)

where ∆̄i ∈ R is a known positive constant. Also, let δ =

[δ2, . . . , δn]
T ∈ Rn−1×n−1, and ∆̄ =

[
∆̄2, . . . , ∆̄n

]T ∈
Rn−1×n−1.

Assumption 3. The control input u1 of the leader is bounded
such that |ẋ1| ≤ ¯̇x1, where ¯̇x1 ∈ R is a known positive
constant.

Let ei(t) ∈ R for i = 2, · · · , n denote the error as

ei =

n∑
j=2

aij(xi − xj) + bi(xi − x1) (16)

where aij and bi are defined in (12) and (13), respectively. The
error in (16) can be rewritten as

ei = xi

n∑
j=2

aij −
n∑

j=2

aijxj + bixi − bix1 (17)

Consider e = [e2, · · · , en]T ∈ Rn−1 to be the vector of error
functions. Taking time derivative of e(t) along (14), equation
(17) can be expressed as

ė =
(
D̄ + B̄

)
ẋ− Āẋ− B̄1ẋ1 (18)

where x = [x2, · · · , xn]T ∈ Rn−1, and 1 = [1, · · · , 1]
T ∈

Rn−1. For the graph Ḡ, using the graph Laplacian given by

L̄ = D̄ − Ā (19)

the open-loop error system in (18) can be expressed as

ė =
(
L̄+ B̄

)
ẋ− B̄1ẋ1. (20)

Based on [24], the matrix L̄+ B̄ in (20) is invertible.
Consideranaugmentederrorvector,denotedby ẽ(t) ∈ Rn−1

as

ẽ , e+ λ

∫ t

0

sign(e(τ))dτ (21)

where λ ∈ R(n−1)×(n−1) is a positive diagonal matrix. When
time derivative of the augmented error vector ẽ along (14) is
zero, i.e ˙̃e(t) = 0, this implies that

ė = −λsign(e) (22)

and the error e(t) approaches zero in finite time.

Theorem 1. For n-agents connected with a directed graph
that has a directed spanning tree, there exists a controller
for the leader-follower system in (14) such that consensus
tracking can be achieved in finite time even if the sign of the
control direction, i.e., sign(gi), is unknown.

Proof. Define a Lyapunov function candidate V (t) ∈ R as

V =
1

2
ẽT ẽ (23)

Case 1: Consider the case when the sign of gi is unknown but
identical, and the magnitude of gi is identical for all the agents,
i.e., gi = gj , g ∀i, j 6= 1.

Taking time derivative of V (t) and using (14), the Lyapunov
derivative can be obtained as

V̇ = ẽT
((
L̄+ B̄

)
gU − B̄1ẋ1

+ λsign (e) +
(
L̄+ B̄

)
δ
)

(24)

where U = [u2, · · · , un]T ∈ Rn−1 is the control vector, and
δ , [δ2, · · · , δn]T ∈ Rn−1. For the open-loop error system in
(20), the control input can be designed as

U =
(
L̄+ B̄

)−1Ma

|g|
sign

(
sin
(π
ε
ẽ
))

(25)

where Ma = diag{Ma2, · · · ,Man} ∈ R(n−1)×(n−1) is
a positive diagonal matrix, and ε = diag{ε2, · · · , εn} ∈
R(n−1)×(n−1) is a positive diagonal matrix. Using the fact that
L̄ + B̄ has full rank, the matrix Ma is chosen such that each
element of Ma1 is greater than the corresponding element in∣∣B̄1¯̇x1

∣∣+ |λ1|+ ∣∣(L̄+ B̄
)
∆̄
∣∣. Using the analysis presented in

Section II, ifsign(U) = −sign(g
(
L̄+B̄

)
e), then V̇ isnegative

definite. From (24) and (25), for a constant vector β ∈ Rn−1,
the surface ẽ (t) reachesβ in finite time and sliding mode occurs
on β. Then, it follows from (22) that e(t) goes to zero in finite
time. Thus, consensus tracking is guaranteed to be achieved in
finite time.

Case 2: The control input gains are not identical and could be
time-varying, i.e. gi(t) 6= gj(t) ∀i, j 6= 1 and i 6= j.

Taking time derivative of Lyapunov function in (23),

V̇ = ẽT
((
L̄+ B̄

)
GU − B̄1ẋ1

+ λsign (e) +
(
L̄+ B̄

)
δ
)

(26)

where G = diag{g2, · · · , gn} ∈ R(n−1)×(n−1). The control
input can be designed as

U = |G|−1
(
L̄+ B̄

)−1
Mbsign

(
sin
(π
ε
ẽ
))

(27)

where Mb = diag{Mb2, · · · ,Mbn} ∈ R(n−1)×(n−1) is a
positive diagonal matrix chosen such that each element ofMb1
is greater than the corresponding element in

∣∣B̄1¯̇x1
∣∣+ |λ1|+∣∣(L̄+ B̄)∆̄

∣∣.
The controllers in (25) and (27) guarantee finite time consen-

sus tracking among agents with single integrator dynamics.
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Extension to Second Order System
Consider the agents modeled as a double integrator system

subjected to disturbance as

ẋ1i = x2i

ẋ2i = giui + δi (28)

where gi(t) ∈ R and δi(t) ∈ R are defined in (14). Let the
tracking error for the ith agent be defined as

e1i ,
n∑

j=2

aij(x1i − x1j) + bi(x1i − x11) (29)

e2i ,
n∑

j=2

aij(x2i − x2j) + bi(x2i − x21) (30)

where ė1i(t) = e2i(t). The error system in (29) and (30) can be
expressed in a concised form as

e1 =
(
L̄+ B̄

)
x1 − B̄1x11 (31)

e2 =
(
L̄+ B̄

)
x2 − B̄1x21 (32)

where e1 = [e12, · · · , e1n]T ∈ Rn−1, e2 = [e22, · · · , e2n]T ∈
Rn−1, x1 = [x12, · · · , x1n]T ∈ Rn−1, and x2 =
[x22, · · · , x2n]T ∈ Rn−1.

The sliding surface s ∈ Rn−1 is designed as

s = e1 + αe2 (33)

where α ∈ R is a positive constant.

Assumption 4. The control input u1 of the leader is bounded
such that |ẋ21| ≤ ¯̇x21, where ¯̇x21 ∈ R is a known positive
constant.

Theorem 2. For n-agents connected with a directed graph
that has a directed spanning tree, there exists a controller
for the leader-follower system in (28) and the sliding surface
defined in (33) such that consensus tracking can be achieved
exponentially even if the sign of the control direction, i.e.,
sign(gi), is unknown.

Proof. Consider the Lyapunov candidate function as

V =
1

2
s̃T s̃ (34)

where the augmented sliding surface is defined as

s̃ , s+ λ

∫ t

0

sign (s (τ)) dτ. (35)

Case 1: Consider the case when the sign of gi is unknown but
identical, and the magnitude of gi is identical for all the agents,
i.e., gi = gj , g ∀i, j 6= 1.

Taking time derivative of the Lyapunov function and using
(32), (33), and (35),

V̇ = s̃T
(
ė1 + α

( (
L̄+ B̄

)
gU − B̄1ẋ21 +

(
L̄+ B̄

)
δ
)

+ λsign (s)
)

(36)

where U(t) and δ(t) are defined in (24). From (36), U(t) can
be designed as

U =
(
L̄+ B̄

)−1Mc

|g|
sign

(
sin
(π
ε
s̃
))

(37)

where Mc = diag{Mc2, · · · ,Mcn} ∈ R(n−1)×(n−1) is a
positive diagonal matrix chosen such that each element of
vector Mc1 is greater than the corresponding element in∣∣B̄1¯̇x21

∣∣ +

∣∣∣∣λα1
∣∣∣∣ +

∣∣(L̄+ B̄
)
∆̄
∣∣ + |e2

α
|. The controller in

(37) guarantees finite time convergence to the surface s̃(t). If
sign(U) = −sign(Mce), then V̇ is negative definite. From
(36) and (37), for a constant vector β ∈ Rn−1, the surface s̃(t)
reaches β in finite time and sliding mode occurs on β. Then,
it follows from (35) that s(t) goes to zero in finite time. From
(33), when s(t) goes to zero, the error

ė1 = − 1

α
e1

goes to zero exponentially. Thus, the controller in (37) guar-
antees consensus tracking among the agents. For higher order
system, consensus can be realized in a similar way.

Case 2: The control input gains are not identical and could be
time-varying, i.e. gi(t) 6= gj(t) ∀i, j 6= 1 and i 6= j.

Taking time derivative of Lyapunov function in (36),

V̇ = s̃T
(
ė1 + α

( (
L̄+ B̄

)
GU − B̄1ẋ21 +

(
L̄+ B̄

)
δ
)

+ λsign (s)
)

(38)

where G = diag{g2, · · · , gn} ∈ R(n−1)×(n−1). Based on
(38), the control input can be designed as

U = |G|−1
(
L̄+ B̄

)−1
Mdsign

(
sin
(π
ε
s̃
))

(39)

where Md = diag{Md2, · · · ,Mdn} ∈ R(n−1)×(n−1) is
a positive diagonal matrix chosen such that each element
of vector Md1 is greater than the corresponding element in∣∣B̄1¯̇x21

∣∣+

∣∣∣∣λα1
∣∣∣∣+
∣∣(L̄+ B̄)∆̄

∣∣+
∣∣∣e2
α

∣∣∣.
The controllers in (37) and (39) guarantee exponential con-

sensus tracking among agents with second order dynamics.

V. SIMULATION RESULTS

A simulation is performed with four agents i = {1, 2, 3, 4},
where (1) is the leader and (2, 3, 4) are the followers. The
Laplacian matrix of the followers and the interconnections
among the leader and the followers can be expressed using the
adjacency matrix as

A =


0 0 0 0
0 0 1 1
0 0 0 1
1 1 0 0

 L̄ =

 2 −1 −1
0 1 −1
−1 0 1

 .
The diagonal matrix B̄ serving as the interconnection between
the leader and the followers is given by

B̄ = diag {0, 0, 1}

The control inputs (25) and (37) for the first order and second
order system, respectively, are used in the simulation results.
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A. Consensus of the First Order Systems

The velocity of the leader is given as

ẋ1 = u1 u1 = cos(t/10) sin(t)

and the kinematics of the followers are described in equation
(14). The initial conditions are

x (0) =
[
−0.796 0.221 −0.922 −0.981

]T
.

The parameters chosen for the control input in (25) are given as
following diagonal matrices:

λ = diag{0.2, 0.12, 0.12} Ma = diag{3, 3, 3}

ε = diag

{
10

3
, 5, 4

}
G = diag{1,−1, 1}

and δi(t) is considered to be a zero mean Gaussian noise of
standard deviation 0.5.

Fig. 2 shows the trajectories of the leader and the followers.
It can be seen that consensus is reached at around t = 15s.
Fig. 3 shows the distance between the leader and followers, and
it can be seen from Fig. 3 that the distance goes to zero when
consensus is reached.

B. Consensus of the Second Order Systems

For the second order system, the leader dynamics are chosen
to follow a sinusoidal trajectory

ẋ11 = x12 ẋ12 = u1 u1 = cos(t/2).

The initial conditions are

x1 = [0.533 − 0.851 − 0.664 − 0.009]
T

x2 = [0 0 0 0]
T
.

The parameters chosen for the control input in (37) are as
follows:

λ = diag{0.2, 0.12, 0.12} Mc = diag{3, 3, 3}

ε = diag

{
10

3
, 5, 4

}
G = diag{−1, 1,−1}

α = 1 ∆̄i = 1.1

and δi(t) is considered to be a zero mean Gaussian noise of
standard deviation 1.

Fig. 4 shows the trajectories of the leader and the followers.
It can be seen that consensus is reached at around t = 10s. Fig.
5 shows the distance between the leader and followers.

VI. CONCLUSIONS

In this paper, a novel sliding surface is presented for leader-
follower multi-agent systems with sign uncertainty in the con-
trol input matrix and non-vanishing disturbances. The sliding
surface ensures finite time convergence for single integrator
multi-agent systems and exponential convergence for second
order multi-agent systems.
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